Image

Real: 0.03%

Fake: 99.96%

Conclusion: FAKE

Most Accurate DeepFake Detection

99% AI Content Detection Accuracy

Drop it here or

Image: JPEG, PNG, WEBP ;
Video: MP4, MOV

AI-powered deepfake detection for images, videos, and audio. A versatile solution for various applications.

Our advanced technology thoroughly examines all forms of media for authenticity, making it ideal for media companies, social media platforms, and law enforcement. Ensure credibility, maintain integrity, and verify evidence with our accurate and reliable solution against the threat of deepfakes.

Select the Image
You Believe Is AI-Generated

Product Features

Product Features

Utilizes advanced machine learning algorithms to identify subtle inconsistencies and manipulations, providing precise and reliable results. This helps maintain the integrity and authenticity of your content.

Real-Time Detection

Delivers detection results within seconds, suitable for live streaming and rapid response needs. Allows immediate action against deepfake content, enhancing credibility and trust.

Batch Processing

Handles multiple files simultaneously, efficiently processing large datasets. Supports drag-and-drop and bulk selection, providing detailed reports for each file to meet high-volume needs.

Multi-Format Support

Compatible with various file types, including JPEG, PNG, WEBP, MP4 and MOV. Ensures effective analysis across different formats, making it convenient for diverse content detection requirements.

Usage Scenario

미디어 및 뉴스
소셜 미디어 플랫폼
법률 및 법 집행
기업 브랜드 보호
금융 서비스

Application scenarios

잘못된 정보를 방지하기 위해 게시된 콘텐츠의 진위성을 보장합니다.

Content

언론사에서는 영상의 진위 여부를 공개하기 전에 딥페이크 감지 기술을 사용합니다.

Our Technology

IDENTIFY is an innovative approach designed to distinguish between real and AI-generated images through advanced spectral and spatial analysis techniques. The method incorporates a multi-step process:


1
Input RGB images are converted to the YCbCr color space to separate luminance and chrominance information, essential for extracting detailed features.
2
Each channel (Y, Cb, Cr) undergoes FFT to transform the image into the frequency domain, revealing underlying patterns crucial for detection.
3
This step analyzes the spectral information by integrating the FFT results radially, capturing unique frequency patterns that differ between real and fake images.
4
The FFT-transformed images are split into four quadrants, and features are extracted from each, combined, and averaged. These features are then fed into a convolutional neural network (CNN) to extract critical spatial features.
5
The CNN integrates spatial features from all channels and passes them through a fully connected layer to classify the image as real or AI-generated.

Experimental Results

We have performed extensive training and hyperparameter tuning, such as comparing different EfficientNet models, number of convolution layers, weights, data augmentations, dropout rates, and regularizers. In the end, the following settings give us the best results:

AKOOL의 AI 도구로 마케팅을 최적화하세요!

마케팅의 진화를 경험하세요. 지금 바로 AI를 만나보세요!

에머슨 스트리트 471번지
캘리포니아주 팔로알토 94301
미국
도구
모든 제품스트리밍 아바타아바타 비디오비디오 번역말하는 아바타얼굴 바꾸기라이브 카메라AI 비디오 편집기이미지를 비디오로말할수 있는 사진이미지 생성기배경 변경비디오 캠페인Jarvis 감독AI 지원 에이전트실시간 번역텍스트 음성 변환음성 복제음성 변환기보이스 실험실홀로그램 아바타 디스플레이Akool Edge

© 2023-2025 AKOOL. 모든 권리 보유.
서비스 약관  |  개인정보 보호정책  |  콘텐츠 검토 정책
Cookie설정
웹사이트 운영에 필수적인 쿠키 외에도, 당사는 트래픽 분석, 콘텐츠 및 광고 맞춤 설정, 소셜 미디어 기능 제공, 제품 및 서비스 개선을 위해 쿠키 및 유사 기술을 사용합니다. 이러한 기술은 당사의 소셜 미디어, 광고 및 분석 파트너를 포함한 제3자에 의해 설정됩니다. 자세한 내용은 개인정보 보호정책을 참조하십시오.